8 research outputs found

    Computational approaches for understanding the diagnosis and treatment of Parkinson's disease

    Get PDF
    This study describes how the application of evolutionary algorithms (EAs) can be used to study motor function in humans with Parkinson's disease (PD) and in animal models of PD. Human data is obtained using commercially available sensors via a range of non-invasive procedures that follow conventional clinical practice. EAs can then be used to classify human data for a range of uses, including diagnosis and disease monitoring. New results are presented that demonstrate how EAs can also be used to classify fruit flies with and without genetic mutations that cause Parkinson's by using measurements of the proboscis extension reflex. The case is made for a computational approach that can be applied across human and animal studies of PD and lays the way for evaluation of existing and new drug therapies in a truly objective way

    Evolving Genes to Balance a Pole

    Get PDF
    International audienceWe discuss how to use a Genetic Regulatory Network as an evolutionary representation to solve a typical GP reinforcement problem, the pole balancing. The network is a modified version of an Artificial Regulatory Network proposed a few years ago, and the task could be solved only by finding a proper way of connecting inputs and outputs to the network. We show that the representation is able to generalize well over the problem domain, and discuss the performance of different models of this kind
    corecore